

# Extracting the Business Value from Maintenance Work Order Feedback

A practical guide to minimum viable work order feedback for the maximum gain in engineering and reliability management

Scheepers Schoeman,  
Senior Associate, Professional Services

# Contents

1. Executive summary | **Page 3**
2. Why talk about maintenance work order feedback? | **Page 4**
3. Evidence: Why quality feedback matters | **Page 5**
4. Purpose-led work order feedback: Who uses what, and why | **Pages 6-9**
5. Minimum viable feedback: Deciding what to capture | **Page 10**
6. Feedback maturity: The link to AMIP 5 | **Pages 11-12**
7. Case examples: Better feedback means better performance | **Pages 13-14**
8. Implementation guidance: Making feedback work in your context | **Pages 15-16**
9. Concluding summary | **Page 17**
10. References | **Page 18**

# 1 Executive Summary

**Maintenance work order feedback sits at the intersection of three competing needs: delivering continuous improvement value, demonstrating compliance, and protecting artisan efficiency.**

When feedback requirements are unclear, organisations tend to swing between extremes: either collecting too little to learn and justify decisions, or collecting too much and producing inconsistent data that no one reuses.

This white paper frames work order feedback as a deliberate balancing act. It provides a practical way to:

- Decide what feedback data you actually need, based on the business purposes it must serve.
- Design the people–process–system loop that makes feedback consistent, accurate and complete.
- Link feedback maturity to broader asset management maturity through Pragma's AMIP 5 framework, particularly the Maintenance Work Management key performance area.

In practice, it shows how to capture the information that truly matters, without turning feedback into a tick-box exercise. It does that by setting out:

- The six primary business purposes of work order feedback (and who uses it).
- A “minimum viable feedback” approach: the smallest set of fields that still delivers value for your chosen purposes.
- A maturity model aligned to AMIP's 1–5 maturity scale, showing what ‘good’ looks like at each level.
- Implementation guidance grounded in real-world examples of how organisations improved feedback quality and follow-up execution using On Key tools.



**Bottom line: Work order feedback is only “worth it” when it protects compliance and improves future work - without stealing artisan time for fields nobody uses.**



# 2

# Why talk about maintenance work order feedback?

We all understand the illustration of the conflicting objectives of asset management, often shown as the challenge of finding the optimal business-specific balance between asset performance, maintenance costs, and risk. Similarly, implementing the best practice in maintenance work order feedback involves a balancing act.

The engineering manager and the legally responsible engineer are at the centre of these conflicting drivers for work order feedback requirements, as they seek to extract all possible continuous improvement value, satisfy Safety, Health, Environment, Risk and Quality (SHERQ) system requirements, and optimise artisan efficiency.

We recognise that accurate and detailed work order feedback has numerous valuable applications. Reliability engineers use this information for root cause analysis (RCA) and various reliability analyses. Engineering managers use it to monitor, control and manage maintenance work. SHERQ managers and plant or mine engineers use it to meet legal responsibilities and audit requirements for certification.

However, there are some arguments against allocating execution resources to administrative tasks, such as work order feedback. Organisations often record large amounts of information that are never reused. For example, it can be very frustrating for artisans to log failure modes that are never used for improvement initiatives. Over time, this recorded information can become inconsistent and inaccurate.

Organisations want their artisans to focus on hands-on work rather than administration. Since all work order feedback must be recorded in an enterprise asset management (EAM) system, this increases the workload for maintenance administrators. All input from artisans must be reviewed and approved. First-line managers, such as maintenance supervisors, then become occupied with administrative tasks to meet the requirements of various management systems within the organisation.

The balancing act of implementing work order feedback best practices may then look as follows: Our need to gather as much valuable information as possible for improvement purposes, while maximising artisan wrench time, makes it worthwhile to define the specific purposes that work order feedback information will serve and to establish the minimum requirements to support those purposes. Once those minimum requirements are clearly outlined, we can enhance the quality, completeness and consistency of the information through good organisational discipline.



**Core insight: Feedback isn't a form. It's a design choice, decide what you need it for, then make the loop easy enough that people actually do it properly.**

# 3 Evidence: Why quality feedback matters

**The need to be selective and disciplined about feedback is not theoretical. When work management fundamentals deteriorate, organisations lose both efficiency and learning capacity.**

Across more than 250 AMIP assessments conducted between 2013 and 2024, Pragma notes persistent weaknesses in foundational practices. That is precisely the environment where feedback quality and consistency erode first.

- ▶ In AMIP 5's analysis of assessment results (2013–2024), Pragma reports that Maintenance Work Management maturity declined by ~16% overall, while related performance outcomes declined by ~36% over the same period.<sup>1</sup>
- ▶ The same AMIP 5 insight section notes that organisations often invest in 'hot topics' (such as digitisation, online monitoring, and predictive tools).<sup>2</sup> At the same time, the basics of work management continue to deteriorate, reducing the value they can extract from those technologies.
- ▶ Wrench time studies show that technicians typically spend a minority of their shift on direct, tool-in-hand work, often cited in the 25–50% range.<sup>3</sup> Therefore, any additional administrative requirements must be carefully justified.
- ▶ Academic research on maintenance work order datasets<sup>4</sup> shows that missing or inconsistent fields distort KPI calculations and reliability insights, and that structured input categories can reduce inconsistency in captured data.

The message is not "capture everything". It is "capture the right things, consistently", and put the loop in place so that the data is actively used.



**Why this matters: If your work management fundamentals are slipping, feedback quality is one of the first things to collapse, and then every KPI and reliability "insight" becomes an argument about bad data.**

# 4

# Purpose-led work order feedback: Who uses what, and why

Work order feedback information can be used for various engineering purposes, not just to close a job.

Different roles use the same work order history for different decisions: compliance sign-off, maintenance work management, cost control or reliability improvements. When applied correctly, work order feedback information is highly valuable for continuous improvement in an organisation, but it can quickly become overwhelming and impractical to record in an artisan's day-to-day work. That is why feedback requirements must be purpose-led and designed for each organisation's specific needs.

The diagram below shows the six main asset management functions (purposes) that maintenance work order feedback fulfils, and the user (role) for each function.

A good starting point for designing work order feedback requirements that are practical for artisans and still deliver reliable history for the roles that need it is to identify the most important purposes to your organisation.



# 4

# Purpose-led work order feedback: Who uses what, and why

Use the six purposes below to decide what must be captured: aim for the minimum information that supports a real decision, and avoid fields that only add administration time.

## 1. Prove statutory compliance

A responsible engineer must demonstrate that the maintenance management system is in place, in use, adequately resourced, and compliant with all regulations under the Occupational Health and Safety Act (OHSA) and the Mine Health and Safety Act (MHSA).

The most basic demonstration of “in use” is through managed schedule compliance on work orders for statutory equipment.

“In use” does not only mean having a status of “complete”. It also includes, for example, evidence of faults being reported and corrected, demonstrating that work orders are executed in practice rather than merely completed on paper.

It is important to note that legal compliance extends beyond the equipment explicitly mentioned in the Acts. Any unsafe condition in equipment resulting from inadequate maintenance is a concern for the legally appointed engineer.

## 2. Identify follow-on work

Most organisations rely primarily on inspections as their maintenance tactic within the EAM system. While these inspections are crucial, they consume artisanal resources. An inspection has limited value if it does not consistently lead to corrective actions.

Sometimes the corrective action can be completed during the same inspection. If not, the corrective action must be flagged for planning and scheduling, and it will become follow-up work. If follow-up work exists but is not recorded, not only will the inspection be a waste of time, but there is a good chance of a breakdown occurring. This makes effective recording of follow-up work vital for the proactive maintenance system that the maintenance manager has implemented.

Since an artisan initiates the follow-on work request, they should also provide planning information at that stage to help define the task scope, including materials, external services, facilities (eg overhead cranes), other technical disciplines, expected task duration, and asset status (running or stationary).

 **Decision rule: If you can't name the user and the decision it supports, don't capture the field.**



# 4

# Purpose-led work order feedback: Who uses what, and why

## 3. Identify improvements on tactics and master data

One of the highest-value outcomes of good feedback is better master data: job plans, task lists, spares, and asset records that enable faster, more repeatable future work.

Asset management specialists often recommend that tactics for Criticality A assets be reviewed annually, and tactics for Criticality B assets every three years. These reviews are rarely conducted in practice because they are highly labour- and time-intensive. An effective continuous improvement process is a powerful tool for master data and tactics optimisation. Artisans should review the content of all preventive maintenance work orders they receive and note recommendations for improvement on the work order (or in work order feedback in the EAM system, if done electronically).

The work order content to be reviewed includes, for example: the asset, functional location, or equipment to which a tactic is assigned; the task list or work; materials required; planned duration; required technical disciplines; and any special tools or services required. These reviews help improve the planning process by highlighting errors in correct material allocations, incorrect time allocated to the work, or the need for specialist skills.

There must also be an approval workflow to evaluate and approve change recommendations based on equipment criticality. The maintenance supervisor can approve recommendations for low- or medium-criticality equipment. The reliability engineer and the engineering manager should approve recommendations on high-criticality equipment. The appointed engineer must approve recommendations on statutory equipment.

In addition, an efficient change application workflow must be in place to update approved recommendations in the asset register or tactics information within the EAM system; this is typically carried out by the planner.

## 4. Record information for root cause analysis

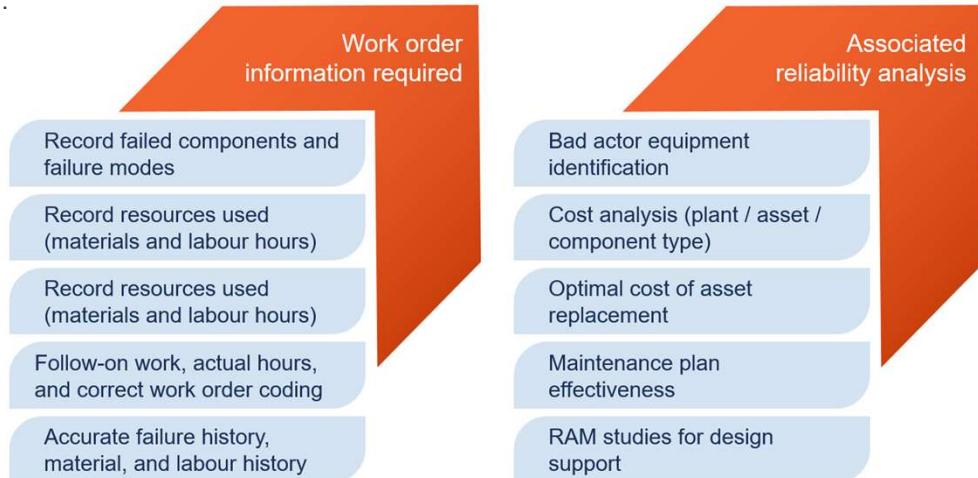
Work order feedback information helps reliability engineers with defect elimination investigations by providing firsthand details about the conditions at the site of failure.

This information, which the defect elimination investigator will find very useful, should ideally be recorded by the responding artisan and include:

- confirming the asset involved
- identifying the failed component and failure mode
- noting the operating conditions at the time of failure
- and documenting the corrective action taken.

The investigator will use this information to confirm or rule out potential root causes during the root cause analysis.

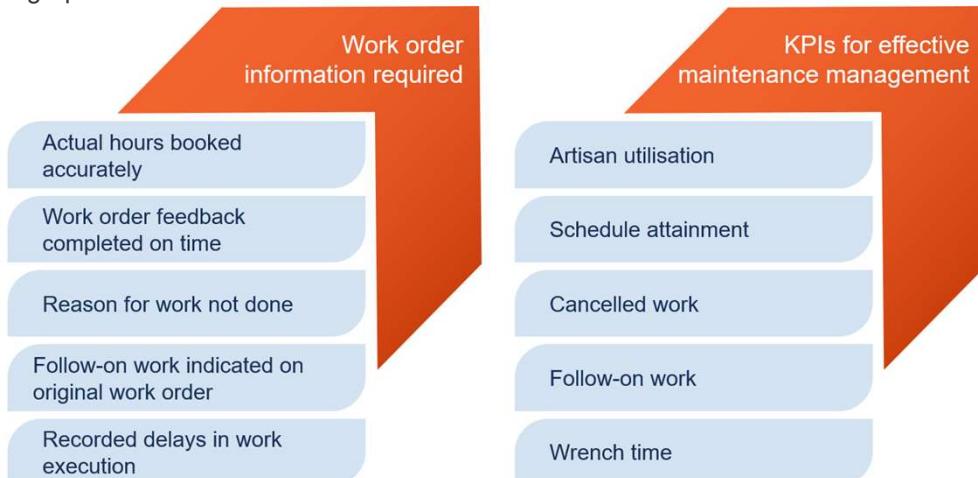
In addition to capturing failure data, feedback from previous work order incidents will be used to create a timeline of the event. Often, the investigator wants to know when the equipment was last inspected and found to be in good condition, as well as recent repairs, the last replacement date, actual condition readings (such as pressures, temperatures and flows) or what follow-up work might have been recommended during previous inspections, which can be checked for completion. This information will help the investigator separate contributing and root causes during the root cause analysis.


# 4

# Purpose-led work order feedback: Who uses what, and why

## 5. Record information for reliability studies

One of the functions of the reliability engineer is to conduct reliability analysis studies to evaluate plant or mine performance and identify areas for improvement.


Many reliability analysis methods depend on high-quality information recorded on maintenance work orders. The graphic shows the work order information that the artisans should provide and the relevant reliability analysis used.



## 6. Enable efficient maintenance management

Finally, there are essential key performance indicators that enable the engineering (or maintenance) manager to monitor and manage safe, effective, and efficient maintenance operations at their site. The data for these KPIs is often sourced from work order feedback.

A few notable maintenance management KPIs that rely on work order feedback (along with the necessary data) are listed in the graphic.



**Reality check: Every field you add has a cost in close-out time. If nobody uses it, it's not "data" — it's friction.**

# 5 Minimum viable feedback: Deciding what to capture

**The fastest way to degrade feedback quality is to request information that will not be used.**

Instead, start by selecting the purpose(s) that matter most for your current maturity and risk profile, then specify the minimum set of fields required to serve those purposes.

Do you need statutory evidence, follow-on work control, better planning data, reliability learning, or KPI visibility? Pick the purposes that matter most in your current context, and resist the temptation to build a ‘one-size-fits-all’ process. When purpose drives the design, you can keep feedback lean while still building history you can trust.

A practical way to do this is to map each purpose to its minimum data requirements and owners:

| Purpose                                                   | Minimum feedback fields (examples)                                                                                                                                                                  | Primary users                                                                                        |
|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Statutory compliance and auditability                     | Asset condition. Non-conformances found, description of repair, follow-on work required, approval and sign-off.                                                                                     | Legally appointed engineer                                                                           |
| Follow-on work identification                             | Asset condition. Non-conformances found, scoping information for follow-on work.                                                                                                                    | Maintenance supervisor, Engineering / Maintenance manager                                            |
| Tactical work order information / master data improvement | Change request flag; corrected task list / job steps; missing spare parts / tools; realistic duration; discipline required; safety prerequisites; asset hierarchy / functional location correction. | Maintenance planner, Maintenance supervisor, Reliability engineer, Engineering / Maintenance manager |
| RCA / defect elimination                                  | Failed component; failure mode; operating conditions; downtime start / stop, symptom timeline; photos; corrective action details.                                                                   | Maintenance supervisor, Maintenance engineer, Reliability engineer                                   |
| Reliability studies and analysis                          | Confirmation of work order coding accuracy, failed component; failure mode; downtime start / stop; corrective action classification.                                                                | Reliability engineer                                                                                 |
| Maintenance work management KPIs                          | Accurate actual labour hours; work not done reason; close-out timeliness, approval and sign-off.                                                                                                    | Maintenance supervisor, Engineering / Maintenance manager                                            |

Once minimum requirements are defined, the organisation can raise data quality through discipline and workflow design, without adding unnecessary administration.

The real value only shows up when feedback is closed, not just captured. A simple closed loop makes it clear who reviews, who records, and who turns history into better job plans, standards, and master data.



**Start here: Pick 2–3 purposes, agree the minimum fields, assign owners, and enforce it. Expanding fields is easy, fixing inconsistent history is not.**

# 6 Feedback maturity: The link to AMIP 5

In Pragma's AMIP framework, Maintenance Work Management is defined as the end-to-end ability to identify, plan, schedule, execute and provide feedback on maintenance work, ensuring that history is properly recorded for analysis and reporting.

Work order feedback is therefore not a 'nice-to-have'; it is a core element of Maintenance Work Management maturity.

Feedback maturity also depends on the supporting enablers described in other AMIP KPAs, such as Asset Information and Technology & Information Management. If the asset register is unstable, or if information systems and workflows do not enforce practical data capture, feedback quality will remain inconsistent regardless of intent.

AMIP 5 uses a five-level maturity scale (Firefighting → Excellence). The table below applies that scale to the best practice, Feedback on Work.



**Maturity lever:** If Maintenance Work Management is end-to-end (identify → plan → schedule → execute → feedback), then weak feedback isn't a reporting gap, it's a maturity gap.

**KPA 09: Maintenance Work Management | Best Practice Feedback on Work (All industries):** The organisation should ensure that all relevant information about the maintenance work, such as work performed, time taken, spare parts and materials used, and specific asset conditions, is properly recorded and stored for reference purposes.

| Firefighting                                                                                                                                                                                                                   | Stabilising                                                                                                                                  | Preventing                                                                                                                                     | Optimising                                                                                                                                                                     | Excellence                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No details of maintenance work are recorded. Verbal feedback is sometimes given to the maintenance foreman. There is no review of maintenance work done – as a result, there is no follow-up or improvements to the AM system. | Some maintenance work is recorded manually on paper-based systems. WO feedback is reviewed on an ad hoc basis by the maintenance supervisor. | All WO feedback is recorded in the CMMS/EAMS by data capturers. The supervisor approves the feedback on tactical and non-tactical work orders. | All WO feedback is recorded in the CMMS/EAMS by the tradesperson in near real time on mobile devices. The supervisor, planner and reliability engineer review all WO feedback. | All WO feedback is recorded in the CMMS/EAMS by the tradesperson in near real time on mobile devices. The supervisor, planner and reliability engineer review all WO feedback. |

# 6 Feedback maturity: The link to AMIP 5

KPA 09: Maintenance Work Management | Best Practice: Feedback on Work (All industries) | continued

| Firefighting                                                                                                                                                                                                                                                                                                                                                                                                                       | Stabilising                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Preventing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Optimising                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Excellence                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| <p><b>Extent</b></p> <p>Feedback includes little detail and only states that the work is completed.</p> <p><b>Quality of feedback</b></p> <p>Ad hoc checks are performed by the supervisor to validate feedback.</p> <p><b>Time</b></p> <p>Feedback is captured within one week.</p> <p><b>Review</b></p> <p>There is no review of maintenance work done. As a result, there is no follow-up or improvements to the AM system.</p> | <p><b>Extent</b></p> <p>All compulsory fields are filled out but there is little information that can be used for analysis and improvement.</p> <p><b>Quality of feedback</b></p> <p>Checks are performed by the supervisor to validate feedback using a risk-based approach.</p> <p><b>Time</b></p> <p>Feedback is captured within one day.</p> <p><b>Review</b></p> <p>The supervisor formally reviews the feedback on tactical and non-tactical work orders. The review is mainly for feedback completeness, follow-up work and focused improvement triggers.</p> | <p><b>Extent</b></p> <p>All compulsory fields are filled out and there is some information that can be used for analysis and improvement. Component failure data is routinely captured for breakdown work.</p> <p><b>Quality of feedback</b></p> <p>Checks are performed by the supervisor to validate feedback using a risk-based approach.</p> <p><b>Time</b></p> <p>Feedback is captured in near real time.</p> <p><b>Review</b></p> <p>The supervisor, planner and reliability engineer review all WO feedback. The review is for feedback completeness, follow-up work and focused improvement triggers, including reliability and master data.</p> | <p><b>Extent</b></p> <p>All compulsory fields are filled out and there is extensive information that can be used for analysis and improvement</p> <p><b>Quality of feedback</b></p> <p>Intelligent systems validate work order feedback based on environmental awareness such as location.</p> <p><b>Time</b></p> <p>Feedback is captured in near real time.</p> <p><b>Review</b></p> <p>The EAMS automatically checks feedback against set parameters and key words to highlight follow-up work and improvement opportunities.</p> | <p><b>Extent</b></p> <p>All compulsory fields are filled out and there is extensive information that can be used for analysis and improvement</p> |

The practical implication is that improving feedback is often one of the most cost-effective ways to increase Maintenance Work Management maturity, because it improves the quality of work history, and a stronger history strengthens compliance evidence, maintenance work planning and control, and reliability learning.

## The maturity lever

Stepping back, the point is simple: work order feedback is a maturity lever inside AMIP's Maintenance Work Management, but it only becomes dependable when the enablers are in place - stable asset information, practical codes, and workflows that make 'done' unambiguous.

Treat feedback as a designed system, not a form, and the same close-out discipline starts improving compliance, planning quality, and reliability learning simultaneously.



# 7

# Case examples: Better feedback means better performance

The following case examples illustrate different stages of the feedback maturity journey.

Each one is included for a simple reason: it shows how disciplined close-out and usable feedback translate into better execution, compliance evidence, or operational visibility.

The common thread is not more administration, it is feedback that is easy to capture, easy to trust, and easy to reuse.

## 1. Use case | Planning and scheduling gains depend on trustworthy close-out data<sup>5</sup>

**Manufacturing Automotive** | In a South African automotive plant, manual scheduling and inconsistent Maintenance Work Management practices undermined schedule attainment and labour utilisation.

A structured process, supported by On Key EAM software as a scheduling front end (integrated with SAP® PM), improved execution discipline. Importantly, the programme emphasised high-quality failure and history data as a foundation for asset criticality analysis and tactics development.

- Schedule attainment during production improved to 93% (from 48%).
- Schedule attainment during non-production improved to 86% (from 50%).
- Labour utilisation improved to 78% during non-production (up 24 percentage points) and to 23% during production (up 5 percentage points), with a significant reduction in overtime.
- Maintenance tactics work reduced MTTR (mean time to repair) from 62 minutes to 21 minutes and delivered savings of R2.27 million (Feb–Aug) with projected annual savings exceeding R20 million.

## 2. Use case | Moving away from paper and time-lagged feedback<sup>6</sup>

**Mining and Minerals Services** | JCI Mining's challenge was not a lack of effort; it was a lack of usable feedback. Work orders were paper-based; information arrived late; and reporting was weak. As a result, planning and control remained informal (often in Excel), and history was unreliable.

Pragma implemented the On Key EAM platform with a multi-site asset register and a practical asset hierarchy, and technicians captured work execution using the On Key Action Field Engineering mobile application. With standardised workflows and improved data granularity, feedback moved closer to the point of work and into a structured history that could actually be analysed.

The organisation reports significantly improved maintenance effectiveness, faster decision-making enabled by accurate data, and better labour scheduling and deployment (resource optimisation), with “100% master data integrity” as a key outcome.

In other words, the win wasn't “more data”, it was faster, more consistent close-out, translated into better master data and better planning decisions.

# 7

# Case examples: Better feedback means better performance

## 3. Use case | Automatically converting inspection feedback into follow-on work<sup>7</sup>

**Oil and Gas Retail** | At Shell's retail network in South Africa (400+ sites supported through a Facilities Management Centre), contractors performed critical equipment inspections (CEIs), some of which are statutory.

When faults were found, follow-up work was previously initiated manually from job card notes, creating delays and increasing the risk of human error.

By structuring CEI checklist items as pass/fail tasks and automatically generating a linked follow-up work order when a task fails, the organisation closed the gap between inspection findings and repairs.

- Shortened the follow-up repairs cycle and reduced manual administration.
- Improved assurance that 100% of failed CEI items are followed up and closed out.
- Enabled contractors to capture pass/fail results and fault detail directly in the Work Manager App while on site.

## 4. Use case | Realtime, paperless feedback at scale<sup>8</sup>

**Hotels and Hospitality Facilities** | A luxury resort operator in Macau (2,716 rooms and a workforce of ~2,000 technicians and housekeeping staff) needed to coordinate work and reduce administrative burden.

By deploying On Key EAM software with mobile applications and BI reporting, they enabled resources to provide realtime feedback and supported automated allocation of unplanned work.

- Established a paperless operation with streamlined workflows and reduced coordination overhead.
- Enabled real-time feedback through mobile applications, supporting higher data accuracy and relevance.
- Automatically allocated large volumes of reactive work orders (reported at hundreds of thousands per year) based on availability, with BI reporting to analyse and visualise performance.



**Common denominator: The same pattern emerges - structured close-out creates trustworthy history, and trustworthy history improves execution.**

**Work order feedback sits at the centre of compliance, maintenance work management quality and reliability learning.**

The practical question is not whether feedback matters; it is what minimum information is required to ensure it is consistent, accurate, and actually used. Here are recommendations to tailor the approach to your organisation:

## Decide on the purpose(s) and minimum required feedback information fields

What you aim to achieve from work order feedback depends on the maturity of your asset management practices. Decide which of the six purposes listed earlier will add value in your context, and do not ask for information that will not be used. From those selected purposes, identify and logically consolidate the minimum information requirements.

## Establish the workflow, responsibilities and facilities

Define the process flow and responsibilities for providing, reviewing, approving, capturing and analysing work order feedback. Once the purpose(s) and minimum requirements are agreed, establish a process for requests to correct or improve work orders, with approval and execution at the appropriate level. Decide on the format, paper-based or captured in the EAM software and ensure practical access is in place (workstations, connectivity, licences, devices) so the process does not fail on logistics.

EAM software with a costing structure based on the number of assets rather than the number of users, for example, Pragma's On Key EAM software can remove barriers to wide participation, especially when deploying handheld feedback capture.

If you want feedback to drive continuous improvement on job plans and asset master data, then the review, capture and update workflow must be designed and owned; it will not happen by itself.



Figure 2: A closed feedback loop turns maintenance history into learning and better planning

## Leverage your EAM software

- ☛ **Avoid free-text analysis:** Instead of open-text fields, define practical, thorough drop-down options to capture failure modes, failed components, and corrective action types.
- ☛ **Use system-driven correction and improvement processes:** Mark correction requests directly during close-out and route them automatically to the appropriate inbox for approval or execution. This is far more effective than handwritten notes on printed work orders.
- ☛ **Adopt handheld devices that make sense:** They improve efficiency by enabling originators to capture feedback directly. They also provide added functionality, such as attaching photos.

## Embed discipline and data quality

Once the above recommendations are in place and agreed upon with the responsible people, the process must be embedded. In other words, the building blocks - deciding on purpose(s) and minimum requirements, defining workflows roles/facilities, and leveraging your EAM software must be put into daily practice.

Data for reliability analysis is only valuable if it is consistent, accurate and complete. This requires early, ongoing management attention, but once the workflow is properly designed and expectations are clear, less policing is needed over time.

In practice, this is where things usually go wrong: work orders are not assigned to the right assets (or the right level in the asset hierarchy), and coding is applied inconsistently (eg: breakdown vs inspection vs statutory vs shutdown, or the correct discipline work centre).

When the work order data system is not used as intended, the analysis becomes noise, and decisions become guesswork.

## Review and adapt

Conditions evolve, and successful implementation should lift asset management maturity. Regularly review the feedback being collected, how it is analysed, and whether improvements are being implemented and sustained, so that the effort remains aligned with organisational values.

## Practical checklist aligned to AMIP's Maintenance Work Management

Use the questions below as a quick diagnostic of whether feedback is working as a maturity lever in your environment:

- ☛ Can you show, for statutory and critical work, that 'complete' means the work was physically done, and defects were either corrected or formally escalated?
- ☛ Are follow-on work orders automatically linked back to the originating inspection or work order, so repeat findings and leakage can be analysed?
- ☛ Do your coding structures (asset hierarchy, components, failure modes, delay reasons) have owners, governance, and periodic clean-up?
- ☛ Do supervisors have a simple review-and-approve workflow that improves quality without becoming a bottleneck?
- ☛ Can planners and reliability engineers easily translate recurring feedback patterns into better tactics, job plans, and spare parts strategies?
- ☛ Do you measure timeliness of feedback (how quickly history is captured) and completeness/ accuracy (how trustworthy it is)?

**If these questions reveal gaps, start small: fix the workflow and the minimum fields first, then let the reliability learning loop handle the rest.**



**Red flag: If "complete" only means a status change, you don't have feedback — you have admin.**

# 9 Concluding Summary

## Work order feedback is not administration for its own sake.

Done well, it becomes the evidence trail that protects the appointed engineer, the input that powers reliability learning, and the operational signal that helps maintenance managers plan and execute work effectively.

The practical starting point is to be deliberate: choose the purposes that matter most, define minimum viable feedback requirements, and close the loop: capture at source, review quickly, record clean history in the EAM system, and use it to improve job plans, standards and master data.

If you want an objective view of what “good” looks like in your environment, Pragma’s AMIP 5 assessment benchmarks asset management maturity (including Maintenance Work Management) and produces a prioritised, practical roadmap.

And if execution is where things typically stall, On Key’s work management and mobile capability (Work Manager and Field Engineering) helps remove friction, making close-out easier, more structured, and more consistent, so the loop keeps moving.

### Next steps

#### Benchmark work management maturity

Do you have a true end-to-end loop (plan, execute, feedback, improve), or only parts of it?

#### Assess feedback quality

Is your history clean enough to support reliability learning and a defensible decision, or are you arguing about data?

#### Simplify close-out

Are you capturing the minimum viable set at source, with the least possible friction?

#### Enforce accountability

Who owns feedback quality, how is it measured, and what happens when it’s weak?

#### Improve continuously

Are you using feedback to update plans, standards, and master data monthly or quarterly, or letting lessons evaporate?

### South Africa

Cape Town | Tel +27 21 943 3900  
Johannesburg | Tel +27 11 848 6940

### Europe

Netherlands, ‘s-Hertogenbosch  
Tel +31 73 648 0563

### North America

Mexico | Tel +52 442 290 2455

[www.pragmaworld.net](http://www.pragmaworld.net)

# 10 References

References accessed January 2026.

1. and 2. Pragma. AMIP 5 Launch Report - [“Spotlight on Maintenance Work Management”](#) (assessment insights, 2013–2024).
3. Reliable Plant. [“Facts About Maintenance Wrench Time.”](#)
4. National Institute of Standards and Technology (NIST). [“The Impact of Data Quality on Maintenance Work Order Analysis: A Case Study in Historical HVAC Maintenance Work Orders.”](#)
5. On Key. Resources. [“Maintenance Plan Development and Work Management with On Key”](#)
6. On Key Resources. [“JCI Mining On Key Implementation”](#)
7. Pragma. Insights and Resources. [“Follow-up Work Orders”](#)
8. On Key Resources. [“On Key Plus Implementation”](#)